Given a general linear operator , find matrices , and such that
where and are orthogonal bases for the column span and row span of , respectively, and is a bidiagonal matrix.
Algorithmic Features
References
call bidiagonalization(A, U, V, B, info [, kstart] [, kend] [, tol])
A
: Linear operator derived from one the base types provided by the
AbstractLinops
module. It is an intent(in)
argument.
U
: Array of types derived from one the base types provided by the AbstractVectors
module. It needs to be consistent with the type of A
. On exit, it contains the
the computed Krylov vectors for the column span of A
. The first entry U(1)
is the starting vector for the Lanczos factorization. Additionally, the
maximum number of Lanczos steps is equal to size(X) - 1
.
It is an intent(inout)
argument.
V
: Array of types derived from one the base types provided by the AbstractVectors
module. It needs to be consistent with the type of A
. On exit, it contains the
the computed Krylov vectors for the row span of A
. It is an intent(inout)
argument.
B
: real
or complex
rank-2 array. On exit, it contains the
bidiagonal matrix computed from the Lanczos factorization. It is an
intent(inout)
argument.
info
: integer
variable. It is the LightKrylov
information flag. On exit, if
info
> 0, the Lanczos factorization experienced a lucky breakdown.
kstart
(optional): integer
value determining the index of the first Lanczos
step to be computed. By default, kstart = 1
.
kend
(optional): integer
value determining the index of the last Lanczos step
to be computed. By default, kend = size(X) - 1
.
tol
(optional): Numerical tolerance below which a subspace is considered
to be -invariant. By default tol = atol_sp
or
tol = atol_rp
depending on the kind of A
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_linop_rsp), | intent(in) | :: | A |
Linear operator to be factorized. |
||
class(abstract_vector_rsp), | intent(inout) | :: | U(:) |
Orthonormal basis for the column span of . On entry, |
||
class(abstract_vector_rsp), | intent(inout) | :: | V(:) |
Orthonormal basis for the row span of . |
||
real(kind=sp), | intent(inout) | :: | B(:,:) |
Bidiagonal matrix. |
||
integer, | intent(out) | :: | info |
Information flag. |
||
integer, | intent(in), | optional | :: | kstart |
Starting index for the Lanczos factorization (default 1). |
|
integer, | intent(in), | optional | :: | kend |
Final index for the Lanczos factorization (default 1). |
|
real(kind=sp), | intent(in), | optional | :: | tol |
Tolerance to determine whether invariant subspaces have been computed or not. |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_linop_rdp), | intent(in) | :: | A |
Linear operator to be factorized. |
||
class(abstract_vector_rdp), | intent(inout) | :: | U(:) |
Orthonormal basis for the column span of . On entry, |
||
class(abstract_vector_rdp), | intent(inout) | :: | V(:) |
Orthonormal basis for the row span of . |
||
real(kind=dp), | intent(inout) | :: | B(:,:) |
Bidiagonal matrix. |
||
integer, | intent(out) | :: | info |
Information flag. |
||
integer, | intent(in), | optional | :: | kstart |
Starting index for the Lanczos factorization (default 1). |
|
integer, | intent(in), | optional | :: | kend |
Final index for the Lanczos factorization (default 1). |
|
real(kind=dp), | intent(in), | optional | :: | tol |
Tolerance to determine whether invariant subspaces have been computed or not. |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_linop_csp), | intent(in) | :: | A |
Linear operator to be factorized. |
||
class(abstract_vector_csp), | intent(inout) | :: | U(:) |
Orthonormal basis for the column span of . On entry, |
||
class(abstract_vector_csp), | intent(inout) | :: | V(:) |
Orthonormal basis for the row span of . |
||
complex(kind=sp), | intent(inout) | :: | B(:,:) |
Bidiagonal matrix. |
||
integer, | intent(out) | :: | info |
Information flag. |
||
integer, | intent(in), | optional | :: | kstart |
Starting index for the Lanczos factorization (default 1). |
|
integer, | intent(in), | optional | :: | kend |
Final index for the Lanczos factorization (default 1). |
|
real(kind=sp), | intent(in), | optional | :: | tol |
Tolerance to determine whether invariant subspaces have been computed or not. |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_linop_cdp), | intent(in) | :: | A |
Linear operator to be factorized. |
||
class(abstract_vector_cdp), | intent(inout) | :: | U(:) |
Orthonormal basis for the column span of . On entry, |
||
class(abstract_vector_cdp), | intent(inout) | :: | V(:) |
Orthonormal basis for the row span of . |
||
complex(kind=dp), | intent(inout) | :: | B(:,:) |
Bidiagonal matrix. |
||
integer, | intent(out) | :: | info |
Information flag. |
||
integer, | intent(in), | optional | :: | kstart |
Starting index for the Lanczos factorization (default 1). |
|
integer, | intent(in), | optional | :: | kend |
Final index for the Lanczos factorization (default 1). |
|
real(kind=dp), | intent(in), | optional | :: | tol |
Tolerance to determine whether invariant subspaces have been computed or not. |