Procedure | Location | Procedure Type | Description |
---|---|---|---|
apply_inverse_permutation_matrix | LightKrylov_BaseKrylov | Interface | Given an array and a permutation vector , this function computes in-place the column-permuted matrix |
apply_permutation_matrix | LightKrylov_BaseKrylov | Interface | Given an array and a permutation vector , this function computes in-place the column-permuted matrix |
arnoldi | LightKrylov_BaseKrylov | Interface | Given a square linear operator , find matrices and such that |
assert_shape | LightKrylov_utils | Interface | This interface provides methods to assert that the shape of its input vector or matrix is the expected shape. It throws an error if not. |
axpby_basis | LightKrylov_AbstractVectors | Interface | In-place addition of two arrays of extended |
bidiagonalization | LightKrylov_BaseKrylov | Interface | Given a general linear operator , find matrices , and such that |
cg | LightKrylov_IterativeSolvers | Interface | Given a symmetric (positive definite) matrix , solves the linear system |
cg_cdp | LightKrylov_IterativeSolvers | Subroutine | |
cg_csp | LightKrylov_IterativeSolvers | Subroutine | |
cg_rdp | LightKrylov_IterativeSolvers | Subroutine | |
cg_rsp | LightKrylov_IterativeSolvers | Subroutine | |
constant_atol_dp | LightKrylov_NewtonKrylov | Subroutine | Abstract interface to define tolerance scheduler for the Newton iteration |
constant_atol_sp | LightKrylov_NewtonKrylov | Subroutine | Abstract interface to define tolerance scheduler for the Newton iteration |
copy | LightKrylov_AbstractVectors | Interface | This interface provides methods to copy an array |
double_gram_schmidt_step | LightKrylov_BaseKrylov | Interface | Given an array of |
dynamic_tol_dp | LightKrylov_NewtonKrylov | Subroutine | Abstract interface to define tolerance scheduler for the Newton iteration |
dynamic_tol_sp | LightKrylov_NewtonKrylov | Subroutine | Abstract interface to define tolerance scheduler for the Newton iteration |
eig | LightKrylov_utils | Interface | Computes the eigenvalue decomposition of a general square matrix. |
eighs | LightKrylov_IterativeSolvers | Interface | Computes the leading eigenpairs of a symmetric operator using the Lanczos iterative process. Given a square linear operator , it finds the leading eigvalues and eigvectors such that: |
eigs | LightKrylov_IterativeSolvers | Interface | Computes the leading eigenpairs of a square linear operator using the Arnoldi iterative process. Given a square linear operator , it finds the leading eigvalues and eigvectorss such that: |
expm | LightKrylov_ExpmLib | Interface | Evaluate the exponential of a dense matrix using Pade approximations. |
get_comm_size | LightKrylov_Constants | Function | Utility function to get the dimension of the communicator known to |
get_rank | LightKrylov_Constants | Function | Utility function to get the rank of the current MPI process. |
gmres | LightKrylov_IterativeSolvers | Interface | Solve a square linear system of equations |
gmres_cdp | LightKrylov_IterativeSolvers | Subroutine | |
gmres_csp | LightKrylov_IterativeSolvers | Subroutine | |
gmres_rdp | LightKrylov_IterativeSolvers | Subroutine | |
gmres_rsp | LightKrylov_IterativeSolvers | Subroutine | |
greetings | LightKrylov | Subroutine | |
initialize_krylov_subspace | LightKrylov_BaseKrylov | Interface | Utility function to initialize a basis for a Krylov subspace. |
innerprod | LightKrylov_AbstractVectors | Interface | Compute the inner product vector or matrix . |
io_rank | LightKrylov_Constants | Function | Utility function to determine whether the current MPI process can do I/O. |
is_orthonormal | LightKrylov_BaseKrylov | Interface | Utility function returning a logical |
k_exptA | LightKrylov_ExpmLib | Interface | Utility function to evaluate the matrix-exponential times vector. |
kexpm | LightKrylov_ExpmLib | Interface | This interface provides methods to evaluate the matrix-vector product based on the Arnoldi method. |
krylov_schur | LightKrylov_BaseKrylov | Interface | Given a partial Krylov decomposition |
lanczos | LightKrylov_BaseKrylov | Interface | Given a symmetric or Hermitian linear operator , find matrices and such that |
linear_combination | LightKrylov_AbstractVectors | Interface | Given a set of extended |
log2 | LightKrylov_utils | Interface | Utility function to compute the base-2 logarithm of a real number. |
newton | LightKrylov_NewtonKrylov | Interface | Implements the simple Newton-Krylov method for finding roots (fixed points) of a nonlinear vector-valued function , i.e. solutions such that starting from an initial guess via successive solution increments based on local linearization (the Jacobian) of the nonlinear function in the vicinity of the current solution. |
norml | LightKrylov_utils | Interface | This interface provides methods to compute the infinity norm of a matrix.
Note that it'll eventually be superseeded by the |
ordschur | LightKrylov_utils | Interface | Given the Schur factorization and basis of a matrix, reorders it to have the selected eigenvalues in the upper left block. |
orthogonalize_against_basis | LightKrylov_BaseKrylov | Interface | |
orthonormalize_basis | LightKrylov_BaseKrylov | Interface | Given an array of vectors, it computes an orthonormal basis for its
column-span using the |
qr | LightKrylov_BaseKrylov | Interface | Given an array of types derived from |
rand_basis | LightKrylov_AbstractVectors | Interface | This interface provides methods to create an array |
save_eigenspectrum | LightKrylov_IterativeSolvers | Interface | Utility function to save the eigenspectrum computed from the Arnoldi factorization. It outpost a .npy file. |
schur | LightKrylov_utils | Interface | Computes the Schur factorization of a general square matrix. |
set_comm_size | LightKrylov_Constants | Subroutine | Utility function to inform |
set_io_rank | LightKrylov_Constants | Subroutine | Utility function to set the rank of the process doing I/O. |
set_rank | LightKrylov_Constants | Subroutine | Utility function to set the rank of an MPI process. |
sqrtm | LightKrylov_utils | Interface | Computes the non-negative square root of a symmetric positive definite matrix using its singular value decomposition. |
sqrtm_eig | LightKrylov_utils | Interface | Computes the non-negative square root of a symmetric positive definite matrix using its eigenvalue decomposition. |
svds | LightKrylov_IterativeSolvers | Interface | Computes the leading singular triplets of an arbitrary linear operator using the Lanczos iterative process. Given a linear operator , it finds the leading singular values and singular vectors such that: |
zero_basis | LightKrylov_AbstractVectors | Interface | This interface provides methods to zero-out a collection of |