| Procedure | Location | Procedure Type | Description |
|---|---|---|---|
| adjoint | LightKrylov_AbstractLinops | Interface | |
| apply_givens_rotation | LightKrylov_Utils | Interface | |
| arnoldi | LightKrylov_BaseKrylov | Interface | Given a square linear operator , find matrices and such that |
| assert_shape | LightKrylov_Utils | Interface | This interface provides methods to assert tha thte shape of its input vector or matrix is as expected. It throws an error if not. |
| axpby_basis | LightKrylov_AbstractVectors | Interface | In-place addition of two arrays of extended |
| bidiagonalization | LightKrylov_BaseKrylov | Interface | Given a general linear operator , find matrices , and such that |
| cg | LightKrylov_IterativeSolvers | Interface | Given a symmetric (positive definite) matrix , solves the linear system |
| check_info | LightKrylov_Logger | Subroutine | |
| comm_close | LightKrylov_Logger | Subroutine | |
| comm_setup | LightKrylov_Logger | Subroutine | |
| constant_tol_dp | LightKrylov_NewtonKrylov | Subroutine | Constant tolerance scheduler for the Newton iteration |
| constant_tol_sp | LightKrylov_NewtonKrylov | Subroutine | Constant tolerance scheduler for the Newton iteration |
| copy | LightKrylov_AbstractVectors | Interface | This interface provides methods to copy an array |
| dense_linop | LightKrylov_AbstractLinops | Interface | |
| dense_vector | LightKrylov_AbstractVectors | Interface | |
| double_gram_schmidt_step | LightKrylov_BaseKrylov | Interface | Given an array of |
| dynamic_tol_dp | LightKrylov_NewtonKrylov | Subroutine | Dynamic tolerance scheduler for the Newton iteration setting tol based on the current residual tol |
| dynamic_tol_sp | LightKrylov_NewtonKrylov | Subroutine | Dynamic tolerance scheduler for the Newton iteration setting tol based on the current residual tol |
| eig | LightKrylov_Utils | Interface | Computes the eigenvalue decomposition of a general square matrix. |
| eighs | LightKrylov_IterativeSolvers | Interface | Computes the leading eigenpairs of a symmetric operator using the Lanczos iterative process. Given a square linear operator , it finds the leading eigvalues and eigvectors such that: |
| eigs | LightKrylov_IterativeSolvers | Interface | Computes the leading eigenpairs of a square linear operator using the Arnoldi iterative process. Given a square linear operator , it finds the leading eigenvalues and eigenvectors such that: |
| fgmres | LightKrylov_IterativeSolvers | Interface | Solve a square linear system of equations |
| get_comm_size | LightKrylov_Constants | Function | Utility function to get the dimension of the communicator known to |
| get_data | LightKrylov_TestUtils | Interface | |
| get_err_str | LightKrylov_TestUtils | Interface | |
| get_rank | LightKrylov_Constants | Function | Utility function to get the rank of the current MPI process. |
| get_state_rdp | LightKrylov_TestUtils | Subroutine | |
| get_state_rsp | LightKrylov_TestUtils | Subroutine | |
| givens_rotation | LightKrylov_Utils | Interface | |
| gmres | LightKrylov_IterativeSolvers | Interface | Solve a square linear system of equations |
| Gram | LightKrylov_AbstractVectors | Interface | Compute the Gram matrix . |
| greetings | LightKrylov | Subroutine | |
| hermitian_linop_cdp | LightKrylov_TestUtils | Interface | |
| hermitian_linop_csp | LightKrylov_TestUtils | Interface | |
| init_rand | LightKrylov_TestUtils | Interface | |
| initialize_krylov_subspace | LightKrylov_BaseKrylov | Interface | Utility function to initialize a basis for a Krylov subspace. |
| innerprod | LightKrylov_AbstractVectors | Interface | Compute the inner product vector or matrix . |
| invperm | LightKrylov_BaseKrylov | Interface | Given a permutation vector , this function computes the vector representation of the inverse permutation matrix. |
| io_rank | LightKrylov_Constants | Function | Utility function to determine whether the current MPI process can do I/O. |
| is_orthonormal | LightKrylov_BaseKrylov | Interface | Utility function returning a logical |
| kexpm | LightKrylov_ExpmLib | Interface | This interface provides methods to evaluate the matrix-vector product based on the Arnoldi method. |
| krylov_exptA | LightKrylov_ExpmLib | Interface | Utility function to evaluate the matrix-exponential times vector. |
| krylov_exptA_cdp | LightKrylov_ExpmLib | Subroutine | Wrapper for the Krylov-based evaluation of the action of the matrix exponential operator
on a vector that conforms to the |
| krylov_exptA_csp | LightKrylov_ExpmLib | Subroutine | Wrapper for the Krylov-based evaluation of the action of the matrix exponential operator
on a vector that conforms to the |
| krylov_exptA_rdp | LightKrylov_ExpmLib | Subroutine | Wrapper for the Krylov-based evaluation of the action of the matrix exponential operator
on a vector that conforms to the |
| krylov_exptA_rsp | LightKrylov_ExpmLib | Subroutine | Wrapper for the Krylov-based evaluation of the action of the matrix exponential operator
on a vector that conforms to the |
| krylov_schur | LightKrylov_BaseKrylov | Interface | Given a partial Krylov decomposition |
| lanczos | LightKrylov_BaseKrylov | Interface | Given a symmetric or Hermitian linear operator , find matrices and such that |
| linear_combination | LightKrylov_AbstractVectors | Interface | Given a set of extended |
| linop_cdp | LightKrylov_TestUtils | Interface | |
| linop_csp | LightKrylov_TestUtils | Interface | |
| linop_rdp | LightKrylov_TestUtils | Interface | |
| linop_rsp | LightKrylov_TestUtils | Interface | |
| log2 | LightKrylov_Utils | Interface | Utility function to compute the base-2 logarithm of a real number. |
| log_debug | LightKrylov_Logger | Subroutine | |
| log_error | LightKrylov_Logger | Subroutine | |
| log_information | LightKrylov_Logger | Subroutine | |
| log_message | LightKrylov_Logger | Subroutine | |
| log_warning | LightKrylov_Logger | Subroutine | |
| logger_setup | LightKrylov_Logger | Subroutine | Wrapper to set up MPI if needed and initialize log files |
| newton | LightKrylov_NewtonKrylov | Interface | Implements the simple Newton-Krylov method for finding roots (fixed points) of a nonlinear vector-valued function , i.e. solutions such that starting from an initial guess via successive solution increments based on local linearization (the Jacobian) of the nonlinear function in the vicinity of the current solution. |
| ordschur | LightKrylov_Utils | Interface | Given the Schur factorization and basis of a matrix, reorders it to have the selected eigenvalues in the upper left block. |
| orthogonalize_against_basis | LightKrylov_BaseKrylov | Interface | |
| orthonormalize_basis | LightKrylov_BaseKrylov | Interface | Given an array of vectors, it computes an orthonormal basis for its
column-span using the |
| permcols | LightKrylov_BaseKrylov | Interface | Given an array and a permutation vector , this function computes in-place the column-permuted matrix |
| put_data | LightKrylov_TestUtils | Interface | |
| qr | LightKrylov_BaseKrylov | Interface | Given an array of types derived from |
| rand_basis | LightKrylov_AbstractVectors | Interface | This interface provides methods to create an array |
| roessler_analytical_fp_rdp | LightKrylov_TestUtils | Subroutine | |
| roessler_analytical_fp_rsp | LightKrylov_TestUtils | Subroutine | |
| save_eigenspectrum | LightKrylov_IterativeSolvers | Interface | Utility function to save the eigenspectrum computed from the Arnoldi factorization. It outpost a .npy file. |
| set_comm_size | LightKrylov_Constants | Subroutine | Utility function to inform |
| set_io_rank | LightKrylov_Constants | Subroutine | Utility function to set the rank of the process doing I/O. |
| set_rank | LightKrylov_Constants | Subroutine | Utility function to set the rank of an MPI process. |
| spd_linop_rdp | LightKrylov_TestUtils | Interface | |
| spd_linop_rsp | LightKrylov_TestUtils | Interface | |
| sqrtm | LightKrylov_Utils | Interface | Computes the non-negative square root of a symmetric positive definite matrix using its singular value decomposition. |
| stop_error | LightKrylov_Logger | Subroutine | |
| svds | LightKrylov_IterativeSolvers | Interface | Computes the leading singular triplets of an arbitrary linear operator using the Lanczos iterative process. Given a linear operator , it finds the leading singular values and singular vectors such that: |
| time_lightkrylov | LightKrylov_Timing | Function | |
| type_error | LightKrylov_Logger | Subroutine | |
| write_results_cdp | LightKrylov_IterativeSolvers | Subroutine | Prints the intermediate results of iterative eigenvalue/singular value decompositions |
| write_results_csp | LightKrylov_IterativeSolvers | Subroutine | Prints the intermediate results of iterative eigenvalue/singular value decompositions |
| write_results_rdp | LightKrylov_IterativeSolvers | Subroutine | Prints the intermediate results of iterative eigenvalue/singular value decompositions |
| write_results_rsp | LightKrylov_IterativeSolvers | Subroutine | Prints the intermediate results of iterative eigenvalue/singular value decompositions |
| zero_basis | LightKrylov_AbstractVectors | Interface | This interface provides methods to zero-out a collection of |