LightKrylov_AbstractVectors Module

This module provides the base class absract_vector from which all Krylov vectors needs to be derived. To use LightKrylov, you need to extend one of the followings:

  • abstract_vector_rsp: Real-valued vector with single precision arithmetic.
  • abstract_vector_rdp: Real-valued vector with double precision arithmetic.
  • abstract_vector_csp: Complex-valued vector with single precision arithmetic.
  • abstract_vector_cdp: Complex-valued vector with double precision arithmetic.

To extend either of these abstract types, you need to provide an associated implementation for the following type-bound procedures:

  • zero(self): A subroutine zeroing-out the vector.
  • rand(self, ifnorm): A subroutine creating a random vector, possibily normalized to have unit-norm (ifnorm = .true.).
  • scal(self, alpha): A subroutine computing in-place the scalar multiplication .
  • axpby(self, alpha, vec, beta): A subroutine computing in-place the product .
  • dot(self, vec): A function computing the inner product .
  • get_size(self): A function returning the dimension of the vector .

Once these type-bound procedures have been implemented by the user, they will automatically be used to define:

  • vector addition add(self, vec) = axpby(self, 1, vec, 1)
  • vector subtraction sub(self, vec) = axpby(self, 1, vec, -1)
  • vector norm norm(self) = sqrt(dot_product(self, self)).

This module also provides the following utility subroutines:

  • innerprod(v, X, y) and innerprod(M, X, Y): Subroutine to compute the inner-product matrix/vector between a Krylov basis X and a Krylov vector (resp. basis) y (resp. Y).
  • linear_combination(y, X, v) and linear_combination(Y, X, B): Subroutine to compute the linear combination .
  • axpby_basis(X, alpha, Y, beta): In-place computation of where and are two arrays of abstract_vectors.
  • zero_basis(X): Zero-out a collection of abstract_vectors.
  • copy(out, from): Copy a collection of abstract_vectors.
  • rand_basis(X, ifnorm): Create a collection of random abstract_vectors. If ifnorm = .true., the vectors are normalized to have unit-norm.


Interfaces

public interface axpby_basis

In-place addition of two arrays of extended abstract_vector.

Description

This interface provides methods to add in-place two arrays of extended abstract_vector, i.e.

No out-of-place alternative is currently available in LightKrylov. If you do need an out-of-place version, you can combine axpby_basis with copy.

Example

    type(my_real_vector), dimension(10) :: X
    type(my_real_vector), dimension(10) :: Y
    real(dp), dimension(10)             :: alpha, beta

    ! ... Whatever your code is doing ...

    call axpby_basis(X, alpha, Y, beta)

    ! ... Rest of your code ...
  • private subroutine axpby_basis_rsp(X, alpha, Y, beta)

    Compute in-place where X and Y are arrays of abstract_vector and alpha and beta are real(sp) numbers.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rsp), intent(inout) :: X(:)

    Input/Ouput array of abstract_vector.

    real(kind=sp), intent(in) :: alpha

    Scalar multipliers.

    class(abstract_vector_rsp), intent(in) :: Y(:)

    Array of abstract_vector to be added/subtracted to X.

    real(kind=sp), intent(in) :: beta

    Scalar multipliers.

  • private subroutine axpby_basis_rdp(X, alpha, Y, beta)

    Compute in-place where X and Y are arrays of abstract_vector and alpha and beta are real(dp) numbers.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rdp), intent(inout) :: X(:)

    Input/Ouput array of abstract_vector.

    real(kind=dp), intent(in) :: alpha

    Scalar multipliers.

    class(abstract_vector_rdp), intent(in) :: Y(:)

    Array of abstract_vector to be added/subtracted to X.

    real(kind=dp), intent(in) :: beta

    Scalar multipliers.

  • private subroutine axpby_basis_csp(X, alpha, Y, beta)

    Compute in-place where X and Y are arrays of abstract_vector and alpha and beta are complex(sp) numbers.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_csp), intent(inout) :: X(:)

    Input/Ouput array of abstract_vector.

    complex(kind=sp), intent(in) :: alpha

    Scalar multipliers.

    class(abstract_vector_csp), intent(in) :: Y(:)

    Array of abstract_vector to be added/subtracted to X.

    complex(kind=sp), intent(in) :: beta

    Scalar multipliers.

  • private subroutine axpby_basis_cdp(X, alpha, Y, beta)

    Compute in-place where X and Y are arrays of abstract_vector and alpha and beta are complex(dp) numbers.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_cdp), intent(inout) :: X(:)

    Input/Ouput array of abstract_vector.

    complex(kind=dp), intent(in) :: alpha

    Scalar multipliers.

    class(abstract_vector_cdp), intent(in) :: Y(:)

    Array of abstract_vector to be added/subtracted to X.

    complex(kind=dp), intent(in) :: beta

    Scalar multipliers.

public interface copy

This interface provides methods to copy an array X of abstract_vector into another array Y. Note that Y needs to be pre-allocated.

Example

    type(my_real_vector), dimension(10) :: X
    type(my_real_vector), dimension(10) :: Y

    ! ... Your code ...

    call copy(Y, X)

    ! ... Your code ...

public interface innerprod

Compute the inner product vector or matrix .

Description

This interface provides methods for computing the inner products between a basis of real or complex vectors and a single vector or another basis . Depending on the case, it returns a one-dimensional array or a two-dimensional array with the same type as .

Example

The example below assumes that you have already extended the abstract_vector_rdp class to define your own my_real_vector type. It then computes the inner product vector defined as .

    type(my_real_vector), dimension(10) :: X
    type(my_real_vector)                :: y
    real(dp), dimension(:), allocatable :: v

    ! ... Part of your code where you initialize everything ...

    call innerprod(v, X, y)

    ! ... Rest of your code ...

Similarly, computing the matrix of inner products between two bases can be done as shown below.

    type(my_real_vector), dimension(10) :: X
    type(my_real_vector), dimension(10) :: Y
    real(dp), dimension(:, :), allocatable :: M

    ! ... Part of your code where you initialize everything ...

    call innerprod(M, X, Y)

    ! ... Rest of your code ...
  • private subroutine innerprod_vector_rsp(v, X, y)

    Computes the inner product vector between a basis X of abstract_vector and v, a single abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(out) :: v(size(X))

    Resulting inner-product vector.

    class(abstract_vector_rsp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_rsp), intent(in) :: y

    Bases of abstract_vector whose inner products need to be computed.

  • private subroutine innerprod_matrix_rsp(M, X, Y)

    Computes the inner product matrix between two bases of abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(out) :: M(size(X),size(Y))

    Resulting inner-product matrix.

    class(abstract_vector_rsp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_rsp), intent(in) :: Y(:)

    Bases of abstract_vector whose inner products need to be computed.

  • private subroutine innerprod_vector_rdp(v, X, y)

    Computes the inner product vector between a basis X of abstract_vector and v, a single abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(out) :: v(size(X))

    Resulting inner-product vector.

    class(abstract_vector_rdp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_rdp), intent(in) :: y

    Bases of abstract_vector whose inner products need to be computed.

  • private subroutine innerprod_matrix_rdp(M, X, Y)

    Computes the inner product matrix between two bases of abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(out) :: M(size(X),size(Y))

    Resulting inner-product matrix.

    class(abstract_vector_rdp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_rdp), intent(in) :: Y(:)

    Bases of abstract_vector whose inner products need to be computed.

  • private subroutine innerprod_vector_csp(v, X, y)

    Computes the inner product vector between a basis X of abstract_vector and v, a single abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(out) :: v(size(X))

    Resulting inner-product vector.

    class(abstract_vector_csp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_csp), intent(in) :: y

    Bases of abstract_vector whose inner products need to be computed.

  • private subroutine innerprod_matrix_csp(M, X, Y)

    Computes the inner product matrix between two bases of abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(out) :: M(size(X),size(Y))

    Resulting inner-product matrix.

    class(abstract_vector_csp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_csp), intent(in) :: Y(:)

    Bases of abstract_vector whose inner products need to be computed.

  • private subroutine innerprod_vector_cdp(v, X, y)

    Computes the inner product vector between a basis X of abstract_vector and v, a single abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(out) :: v(size(X))

    Resulting inner-product vector.

    class(abstract_vector_cdp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_cdp), intent(in) :: y

    Bases of abstract_vector whose inner products need to be computed.

  • private subroutine innerprod_matrix_cdp(M, X, Y)

    Computes the inner product matrix between two bases of abstract_vector.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(out) :: M(size(X),size(Y))

    Resulting inner-product matrix.

    class(abstract_vector_cdp), intent(in) :: X(:)

    Bases of abstract_vector whose inner products need to be computed.

    class(abstract_vector_cdp), intent(in) :: Y(:)

    Bases of abstract_vector whose inner products need to be computed.

public interface linear_combination

Given a set of extended abstract_vectors and coefficients, return the corresponding linear combinations.

Description

This interface provides methods for computing linear combinations of a set of extended abstract_vectors. Depending on its input, it either computes

i.e. a single vector, or

i.e. a set of vectors of the same type as .

Example

    type(my_real_vector), dimension(10) :: X
    real(dp), dimension(m, n)           :: B
    type(my_real_vector)                :: Y

    ! ... Whatever your code is doing ...

    call linear_combination(Y, X, B)

    ! ... Rest of your code ...
  • private subroutine linear_combination_vector_rsp(y, X, v)

    Given X and v, this function return where y is an abstract_vector, X an array of abstract_vector and v a Fortran array containing the coefficients of the linear combination.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rsp), intent(out), allocatable :: y

    Ouput vector.

    class(abstract_vector_rsp), intent(in) :: X(:)

    Krylov basis.

    real(kind=sp), intent(in) :: v(:)

    Coordinates of y in the Krylov basis X.

  • private subroutine linear_combination_matrix_rsp(Y, X, B)

    Given X and B, this function computes where X and Y are arrays of abstract_vector, and B is a 2D Fortran array.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rsp), intent(out), allocatable :: Y(:)

    Output matrix.

    class(abstract_vector_rsp), intent(in) :: X(:)

    Krylov basis.

    real(kind=sp), intent(in) :: B(:,:)

    Coefficients of the linear combinations.

  • private subroutine linear_combination_vector_rdp(y, X, v)

    Given X and v, this function return where y is an abstract_vector, X an array of abstract_vector and v a Fortran array containing the coefficients of the linear combination.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rdp), intent(out), allocatable :: y

    Ouput vector.

    class(abstract_vector_rdp), intent(in) :: X(:)

    Krylov basis.

    real(kind=dp), intent(in) :: v(:)

    Coordinates of y in the Krylov basis X.

  • private subroutine linear_combination_matrix_rdp(Y, X, B)

    Given X and B, this function computes where X and Y are arrays of abstract_vector, and B is a 2D Fortran array.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rdp), intent(out), allocatable :: Y(:)

    Output matrix.

    class(abstract_vector_rdp), intent(in) :: X(:)

    Krylov basis.

    real(kind=dp), intent(in) :: B(:,:)

    Coefficients of the linear combinations.

  • private subroutine linear_combination_vector_csp(y, X, v)

    Given X and v, this function return where y is an abstract_vector, X an array of abstract_vector and v a Fortran array containing the coefficients of the linear combination.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_csp), intent(out), allocatable :: y

    Ouput vector.

    class(abstract_vector_csp), intent(in) :: X(:)

    Krylov basis.

    complex(kind=sp), intent(in) :: v(:)

    Coordinates of y in the Krylov basis X.

  • private subroutine linear_combination_matrix_csp(Y, X, B)

    Given X and B, this function computes where X and Y are arrays of abstract_vector, and B is a 2D Fortran array.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_csp), intent(out), allocatable :: Y(:)

    Output matrix.

    class(abstract_vector_csp), intent(in) :: X(:)

    Krylov basis.

    complex(kind=sp), intent(in) :: B(:,:)

    Coefficients of the linear combinations.

  • private subroutine linear_combination_vector_cdp(y, X, v)

    Given X and v, this function return where y is an abstract_vector, X an array of abstract_vector and v a Fortran array containing the coefficients of the linear combination.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_cdp), intent(out), allocatable :: y

    Ouput vector.

    class(abstract_vector_cdp), intent(in) :: X(:)

    Krylov basis.

    complex(kind=dp), intent(in) :: v(:)

    Coordinates of y in the Krylov basis X.

  • private subroutine linear_combination_matrix_cdp(Y, X, B)

    Given X and B, this function computes where X and Y are arrays of abstract_vector, and B is a 2D Fortran array.

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_cdp), intent(out), allocatable :: Y(:)

    Output matrix.

    class(abstract_vector_cdp), intent(in) :: X(:)

    Krylov basis.

    complex(kind=dp), intent(in) :: B(:,:)

    Coefficients of the linear combinations.

public interface rand_basis

This interface provides methods to create an array X of random abstract_vector. It is a simple wrapper around X(i)%rand(ifnorm).

Example

    type(my_real_vector), dimension(10) :: X
    logical                             :: ifnorm = .true.

    ! ... Your code ...

    call rand_basis(X, ifnorm)

    ! ... Your code ...
  • private subroutine rand_basis_rsp(X, ifnorm)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rsp), intent(inout) :: X(:)
    logical, intent(in), optional :: ifnorm
  • private subroutine rand_basis_rdp(X, ifnorm)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rdp), intent(inout) :: X(:)
    logical, intent(in), optional :: ifnorm
  • private subroutine rand_basis_csp(X, ifnorm)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_csp), intent(inout) :: X(:)
    logical, intent(in), optional :: ifnorm
  • private subroutine rand_basis_cdp(X, ifnorm)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_cdp), intent(inout) :: X(:)
    logical, intent(in), optional :: ifnorm

public interface zero_basis

This interface provides methods to zero-out a collection of abstract_vector X. It is a simple wrapper around X(i)%zero().

Example

    type(my_real_vector), dimension(10) :: X

    ! ... Your code ...

    call zero_basis(X)

    ! ... Your code ...
  • private subroutine zero_basis_rsp(X)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rsp), intent(inout) :: X(:)
  • private subroutine zero_basis_rdp(X)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_rdp), intent(inout) :: X(:)
  • private subroutine zero_basis_csp(X)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_csp), intent(inout) :: X(:)
  • private subroutine zero_basis_cdp(X)

    Arguments

    Type IntentOptional Attributes Name
    class(abstract_vector_cdp), intent(inout) :: X(:)

Derived Types

type, public, abstract ::  abstract_vector

Base abstract type from which all other types of vectors used in LightKrylov are being derived from.

Read more…

type, public, abstract, extends(abstract_vector) ::  abstract_vector_cdp

Abstract type to define complex(dp)-valued vectors. Derived-types defined by the user should be extending one such class.

Type-Bound Procedures

procedure, public, pass(self) :: add => add_cdp ../../

Adds two abstract_vector.

procedure(abstract_axpby_cdp), public, deferred, pass(self) :: axpby ../../

In-place computation of .

procedure, public, pass(self) :: chsgn => chsgn_cdp
procedure(abstract_dot_cdp), public, deferred, pass(self) :: dot ../../

Computes the dot product between two abstract_vector_cdp.

procedure(abstract_get_size_cdp), public, deferred, pass(self) :: get_size ../../

Return size of specific abstract vector

procedure, public, pass(self) :: norm => norm_cdp ../../

Computes the norm of the abstract_vector.

procedure(abstract_rand_cdp), public, deferred, pass(self) :: rand ../../

Creates a random abstract_vector_cdp.

procedure(abstract_scal_cdp), public, deferred, pass(self) :: scal ../../

Compute the scalar-vector product.

procedure, public, pass(self) :: sub => sub_cdp ../../

Subtracts two abstract_vector.

procedure(abstract_zero_cdp), public, deferred, pass(self) :: zero ../../

Sets an abstract_vector_cdp to zero.

type, public, abstract, extends(abstract_vector) ::  abstract_vector_csp

Abstract type to define complex(sp)-valued vectors. Derived-types defined by the user should be extending one such class.

Type-Bound Procedures

procedure, public, pass(self) :: add => add_csp ../../

Adds two abstract_vector.

procedure(abstract_axpby_csp), public, deferred, pass(self) :: axpby ../../

In-place computation of .

procedure, public, pass(self) :: chsgn => chsgn_csp
procedure(abstract_dot_csp), public, deferred, pass(self) :: dot ../../

Computes the dot product between two abstract_vector_csp.

procedure(abstract_get_size_csp), public, deferred, pass(self) :: get_size ../../

Return size of specific abstract vector

procedure, public, pass(self) :: norm => norm_csp ../../

Computes the norm of the abstract_vector.

procedure(abstract_rand_csp), public, deferred, pass(self) :: rand ../../

Creates a random abstract_vector_csp.

procedure(abstract_scal_csp), public, deferred, pass(self) :: scal ../../

Compute the scalar-vector product.

procedure, public, pass(self) :: sub => sub_csp ../../

Subtracts two abstract_vector.

procedure(abstract_zero_csp), public, deferred, pass(self) :: zero ../../

Sets an abstract_vector_csp to zero.

type, public, abstract, extends(abstract_vector) ::  abstract_vector_rdp

Abstract type to define real(dp)-valued vectors. Derived-types defined by the user should be extending one such class.

Type-Bound Procedures

procedure, public, pass(self) :: add => add_rdp ../../

Adds two abstract_vector.

procedure(abstract_axpby_rdp), public, deferred, pass(self) :: axpby ../../

In-place computation of .

procedure, public, pass(self) :: chsgn => chsgn_rdp
procedure(abstract_dot_rdp), public, deferred, pass(self) :: dot ../../

Computes the dot product between two abstract_vector_rdp.

procedure(abstract_get_size_rdp), public, deferred, pass(self) :: get_size ../../

Return size of specific abstract vector

procedure, public, pass(self) :: norm => norm_rdp ../../

Computes the norm of the abstract_vector.

procedure(abstract_rand_rdp), public, deferred, pass(self) :: rand ../../

Creates a random abstract_vector_rdp.

procedure(abstract_scal_rdp), public, deferred, pass(self) :: scal ../../

Compute the scalar-vector product.

procedure, public, pass(self) :: sub => sub_rdp ../../

Subtracts two abstract_vector.

procedure(abstract_zero_rdp), public, deferred, pass(self) :: zero ../../

Sets an abstract_vector_rdp to zero.

type, public, abstract, extends(abstract_vector) ::  abstract_vector_rsp

Abstract type to define real(sp)-valued vectors. Derived-types defined by the user should be extending one such class.

Type-Bound Procedures

procedure, public, pass(self) :: add => add_rsp ../../

Adds two abstract_vector.

procedure(abstract_axpby_rsp), public, deferred, pass(self) :: axpby ../../

In-place computation of .

procedure, public, pass(self) :: chsgn => chsgn_rsp
procedure(abstract_dot_rsp), public, deferred, pass(self) :: dot ../../

Computes the dot product between two abstract_vector_rsp.

procedure(abstract_get_size_rsp), public, deferred, pass(self) :: get_size ../../

Return size of specific abstract vector

procedure, public, pass(self) :: norm => norm_rsp ../../

Computes the norm of the abstract_vector.

procedure(abstract_rand_rsp), public, deferred, pass(self) :: rand ../../

Creates a random abstract_vector_rsp.

procedure(abstract_scal_rsp), public, deferred, pass(self) :: scal ../../

Compute the scalar-vector product.

procedure, public, pass(self) :: sub => sub_rsp ../../

Subtracts two abstract_vector.

procedure(abstract_zero_rsp), public, deferred, pass(self) :: zero ../../

Sets an abstract_vector_rsp to zero.