This module provides the base class absract_vector
from which all Krylov vectors
needs to be derived. To use LightKrylov
, you need to extend one of the
followings:
abstract_vector_rsp
: Real-valued vector with single precision arithmetic.abstract_vector_rdp
: Real-valued vector with double precision arithmetic.abstract_vector_csp
: Complex-valued vector with single precision arithmetic.abstract_vector_cdp
: Complex-valued vector with double precision arithmetic.To extend either of these abstract types, you need to provide an associated implementation for the following type-bound procedures:
zero(self)
: A subroutine zeroing-out the vector.rand(self, ifnorm)
: A subroutine creating a random vector, possibily normalized to have unit-norm (ifnorm = .true.
).scal(self, alpha)
: A subroutine computing in-place the scalar multiplication .axpby(self, alpha, vec, beta)
: A subroutine computing in-place the product .dot(self, vec)
: A function computing the inner product .get_size(self)
: A function returning the dimension of the vector .Once these type-bound procedures have been implemented by the user, they will automatically be used to define:
add(self, vec) = axpby(self, 1, vec, 1)
sub(self, vec) = axpby(self, 1, vec, -1)
norm(self) = sqrt(dot_product(self, self))
.This module also provides the following utility subroutines:
innerprod(v, X, y)
and innerprod(M, X, Y)
: Subroutine to compute the
inner-product matrix/vector between a Krylov basis X
and a Krylov vector
(resp. basis) y
(resp. Y
).linear_combination(y, X, v)
and linear_combination(Y, X, B)
: Subroutine to
compute the linear combination .axpby_basis(X, alpha, Y, beta)
: In-place computation of
where and are two arrays of abstract_vector
s.zero_basis(X)
: Zero-out a collection of abstract_vectors
.copy(out, from)
: Copy a collection of abstract_vectors
.rand_basis(X, ifnorm)
: Create a collection of random abstract_vectors
. If ifnorm = .true.
, the vectors are normalized to have unit-norm.In-place addition of two arrays of extended abstract_vector
.
This interface provides methods to add in-place two arrays of
extended abstract_vector
, i.e.
No out-of-place alternative is currently available in LightKrylov
.
If you do need an out-of-place version, you can combine axpby_basis
with copy
.
type(my_real_vector), dimension(10) :: X
type(my_real_vector), dimension(10) :: Y
real(dp), dimension(10) :: alpha, beta
! ... Whatever your code is doing ...
call axpby_basis(X, alpha, Y, beta)
! ... Rest of your code ...
Compute in-place where
X
and Y
are arrays of abstract_vector
and alpha
and beta
are real(sp)
numbers.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(inout) | :: | X(:) |
Input/Ouput array of |
||
real(kind=sp), | intent(in) | :: | alpha |
Scalar multipliers. |
||
class(abstract_vector_rsp), | intent(in) | :: | Y(:) |
Array of |
||
real(kind=sp), | intent(in) | :: | beta |
Scalar multipliers. |
Compute in-place where
X
and Y
are arrays of abstract_vector
and alpha
and beta
are real(dp)
numbers.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(inout) | :: | X(:) |
Input/Ouput array of |
||
real(kind=dp), | intent(in) | :: | alpha |
Scalar multipliers. |
||
class(abstract_vector_rdp), | intent(in) | :: | Y(:) |
Array of |
||
real(kind=dp), | intent(in) | :: | beta |
Scalar multipliers. |
Compute in-place where
X
and Y
are arrays of abstract_vector
and alpha
and beta
are complex(sp)
numbers.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(inout) | :: | X(:) |
Input/Ouput array of |
||
complex(kind=sp), | intent(in) | :: | alpha |
Scalar multipliers. |
||
class(abstract_vector_csp), | intent(in) | :: | Y(:) |
Array of |
||
complex(kind=sp), | intent(in) | :: | beta |
Scalar multipliers. |
Compute in-place where
X
and Y
are arrays of abstract_vector
and alpha
and beta
are complex(dp)
numbers.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(inout) | :: | X(:) |
Input/Ouput array of |
||
complex(kind=dp), | intent(in) | :: | alpha |
Scalar multipliers. |
||
class(abstract_vector_cdp), | intent(in) | :: | Y(:) |
Array of |
||
complex(kind=dp), | intent(in) | :: | beta |
Scalar multipliers. |
This interface provides methods to copy an array X
of abstract_vector
into
another array Y
. Note that Y
needs to be pre-allocated.
type(my_real_vector), dimension(10) :: X
type(my_real_vector), dimension(10) :: Y
! ... Your code ...
call copy(Y, X)
! ... Your code ...
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(out) | :: | out | |||
class(abstract_vector_rsp), | intent(in) | :: | from |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(out) | :: | out(:) | |||
class(abstract_vector_rsp), | intent(in) | :: | from(:) |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(out) | :: | out | |||
class(abstract_vector_rdp), | intent(in) | :: | from |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(out) | :: | out(:) | |||
class(abstract_vector_rdp), | intent(in) | :: | from(:) |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(out) | :: | out | |||
class(abstract_vector_csp), | intent(in) | :: | from |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(out) | :: | out(:) | |||
class(abstract_vector_csp), | intent(in) | :: | from(:) |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(out) | :: | out | |||
class(abstract_vector_cdp), | intent(in) | :: | from |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(out) | :: | out(:) | |||
class(abstract_vector_cdp), | intent(in) | :: | from(:) |
Compute the inner product vector or matrix .
This interface provides methods for computing the inner products between a basis
of real
or complex
vectors and a single vector
or another basis . Depending on the case, it
returns a one-dimensional array or a two-dimensional array
with the same type as .
The example below assumes that you have already extended the abstract_vector_rdp
class to define your own my_real_vector
type. It then computes the inner product
vector defined as .
type(my_real_vector), dimension(10) :: X
type(my_real_vector) :: y
real(dp), dimension(:), allocatable :: v
! ... Part of your code where you initialize everything ...
call innerprod(v, X, y)
! ... Rest of your code ...
Similarly, computing the matrix of inner products between two bases can be done as shown below.
type(my_real_vector), dimension(10) :: X
type(my_real_vector), dimension(10) :: Y
real(dp), dimension(:, :), allocatable :: M
! ... Part of your code where you initialize everything ...
call innerprod(M, X, Y)
! ... Rest of your code ...
Computes the inner product vector between
a basis X
of abstract_vector
and v
, a single abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=sp), | intent(out) | :: | v(size(X)) |
Resulting inner-product vector. |
||
class(abstract_vector_rsp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_rsp), | intent(in) | :: | y |
Bases of |
Computes the inner product matrix between
two bases of abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=sp), | intent(out) | :: | M(size(X),size(Y)) |
Resulting inner-product matrix. |
||
class(abstract_vector_rsp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_rsp), | intent(in) | :: | Y(:) |
Bases of |
Computes the inner product vector between
a basis X
of abstract_vector
and v
, a single abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(out) | :: | v(size(X)) |
Resulting inner-product vector. |
||
class(abstract_vector_rdp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_rdp), | intent(in) | :: | y |
Bases of |
Computes the inner product matrix between
two bases of abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(out) | :: | M(size(X),size(Y)) |
Resulting inner-product matrix. |
||
class(abstract_vector_rdp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_rdp), | intent(in) | :: | Y(:) |
Bases of |
Computes the inner product vector between
a basis X
of abstract_vector
and v
, a single abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
complex(kind=sp), | intent(out) | :: | v(size(X)) |
Resulting inner-product vector. |
||
class(abstract_vector_csp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_csp), | intent(in) | :: | y |
Bases of |
Computes the inner product matrix between
two bases of abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
complex(kind=sp), | intent(out) | :: | M(size(X),size(Y)) |
Resulting inner-product matrix. |
||
class(abstract_vector_csp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_csp), | intent(in) | :: | Y(:) |
Bases of |
Computes the inner product vector between
a basis X
of abstract_vector
and v
, a single abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
complex(kind=dp), | intent(out) | :: | v(size(X)) |
Resulting inner-product vector. |
||
class(abstract_vector_cdp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_cdp), | intent(in) | :: | y |
Bases of |
Computes the inner product matrix between
two bases of abstract_vector
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
complex(kind=dp), | intent(out) | :: | M(size(X),size(Y)) |
Resulting inner-product matrix. |
||
class(abstract_vector_cdp), | intent(in) | :: | X(:) |
Bases of |
||
class(abstract_vector_cdp), | intent(in) | :: | Y(:) |
Bases of |
Given a set of extended abstract_vectors
and coefficients, return the corresponding
linear combinations.
This interface provides methods for computing linear combinations of a set of extended
abstract_vectors
. Depending on its input, it either computes
i.e. a single vector, or
i.e. a set of vectors of the same type as .
type(my_real_vector), dimension(10) :: X
real(dp), dimension(m, n) :: B
type(my_real_vector) :: Y
! ... Whatever your code is doing ...
call linear_combination(Y, X, B)
! ... Rest of your code ...
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_rsp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=sp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_rsp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=sp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_rdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=dp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_rdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=dp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_csp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=sp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_csp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=sp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_cdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=dp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_cdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=dp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |
This interface provides methods to create an array X
of random abstract_vector
.
It is a simple wrapper around X(i)%rand(ifnorm)
.
type(my_real_vector), dimension(10) :: X
logical :: ifnorm = .true.
! ... Your code ...
call rand_basis(X, ifnorm)
! ... Your code ...
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(inout) | :: | X(:) | |||
logical, | intent(in), | optional | :: | ifnorm |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(inout) | :: | X(:) | |||
logical, | intent(in), | optional | :: | ifnorm |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(inout) | :: | X(:) | |||
logical, | intent(in), | optional | :: | ifnorm |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(inout) | :: | X(:) | |||
logical, | intent(in), | optional | :: | ifnorm |
This interface provides methods to zero-out a collection of abstract_vector
X
.
It is a simple wrapper around X(i)%zero()
.
type(my_real_vector), dimension(10) :: X
! ... Your code ...
call zero_basis(X)
! ... Your code ...
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(inout) | :: | X(:) |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(inout) | :: | X(:) |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(inout) | :: | X(:) |
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(inout) | :: | X(:) |
Base abstract type from which all other types of vectors used in LightKrylov
are being derived from.
Abstract type to define complex(dp)-valued vectors. Derived-types defined by the user should be extending one such class.
procedure, public, pass(self) :: add => add_cdp | ../../ Adds two |
procedure(abstract_axpby_cdp), public, deferred, pass(self) :: axpby | ../../ In-place computation of . |
procedure, public, pass(self) :: chsgn => chsgn_cdp | |
procedure(abstract_dot_cdp), public, deferred, pass(self) :: dot | ../../ Computes the dot product between two |
procedure(abstract_get_size_cdp), public, deferred, pass(self) :: get_size | ../../ Return size of specific abstract vector |
procedure, public, pass(self) :: norm => norm_cdp | ../../ Computes the norm of the |
procedure(abstract_rand_cdp), public, deferred, pass(self) :: rand | ../../ Creates a random |
procedure(abstract_scal_cdp), public, deferred, pass(self) :: scal | ../../ Compute the scalar-vector product. |
procedure, public, pass(self) :: sub => sub_cdp | ../../ Subtracts two |
procedure(abstract_zero_cdp), public, deferred, pass(self) :: zero | ../../ Sets an |
Abstract type to define complex(sp)-valued vectors. Derived-types defined by the user should be extending one such class.
procedure, public, pass(self) :: add => add_csp | ../../ Adds two |
procedure(abstract_axpby_csp), public, deferred, pass(self) :: axpby | ../../ In-place computation of . |
procedure, public, pass(self) :: chsgn => chsgn_csp | |
procedure(abstract_dot_csp), public, deferred, pass(self) :: dot | ../../ Computes the dot product between two |
procedure(abstract_get_size_csp), public, deferred, pass(self) :: get_size | ../../ Return size of specific abstract vector |
procedure, public, pass(self) :: norm => norm_csp | ../../ Computes the norm of the |
procedure(abstract_rand_csp), public, deferred, pass(self) :: rand | ../../ Creates a random |
procedure(abstract_scal_csp), public, deferred, pass(self) :: scal | ../../ Compute the scalar-vector product. |
procedure, public, pass(self) :: sub => sub_csp | ../../ Subtracts two |
procedure(abstract_zero_csp), public, deferred, pass(self) :: zero | ../../ Sets an |
Abstract type to define real(dp)-valued vectors. Derived-types defined by the user should be extending one such class.
procedure, public, pass(self) :: add => add_rdp | ../../ Adds two |
procedure(abstract_axpby_rdp), public, deferred, pass(self) :: axpby | ../../ In-place computation of . |
procedure, public, pass(self) :: chsgn => chsgn_rdp | |
procedure(abstract_dot_rdp), public, deferred, pass(self) :: dot | ../../ Computes the dot product between two |
procedure(abstract_get_size_rdp), public, deferred, pass(self) :: get_size | ../../ Return size of specific abstract vector |
procedure, public, pass(self) :: norm => norm_rdp | ../../ Computes the norm of the |
procedure(abstract_rand_rdp), public, deferred, pass(self) :: rand | ../../ Creates a random |
procedure(abstract_scal_rdp), public, deferred, pass(self) :: scal | ../../ Compute the scalar-vector product. |
procedure, public, pass(self) :: sub => sub_rdp | ../../ Subtracts two |
procedure(abstract_zero_rdp), public, deferred, pass(self) :: zero | ../../ Sets an |
Abstract type to define real(sp)-valued vectors. Derived-types defined by the user should be extending one such class.
procedure, public, pass(self) :: add => add_rsp | ../../ Adds two |
procedure(abstract_axpby_rsp), public, deferred, pass(self) :: axpby | ../../ In-place computation of . |
procedure, public, pass(self) :: chsgn => chsgn_rsp | |
procedure(abstract_dot_rsp), public, deferred, pass(self) :: dot | ../../ Computes the dot product between two |
procedure(abstract_get_size_rsp), public, deferred, pass(self) :: get_size | ../../ Return size of specific abstract vector |
procedure, public, pass(self) :: norm => norm_rsp | ../../ Computes the norm of the |
procedure(abstract_rand_rsp), public, deferred, pass(self) :: rand | ../../ Creates a random |
procedure(abstract_scal_rsp), public, deferred, pass(self) :: scal | ../../ Compute the scalar-vector product. |
procedure, public, pass(self) :: sub => sub_rsp | ../../ Subtracts two |
procedure(abstract_zero_rsp), public, deferred, pass(self) :: zero | ../../ Sets an |