Given a set of extended abstract_vectors
and coefficients, return the corresponding
linear combinations.
This interface provides methods for computing linear combinations of a set of extended
abstract_vectors
. Depending on its input, it either computes
i.e. a single vector, or
i.e. a set of vectors of the same type as .
type(my_real_vector), dimension(10) :: X
real(dp), dimension(m, n) :: B
type(my_real_vector) :: Y
! ... Whatever your code is doing ...
call linear_combination(Y, X, B)
! ... Rest of your code ...
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_rsp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=sp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rsp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_rsp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=sp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_rdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=dp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_rdp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_rdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
real(kind=dp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_csp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=sp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_csp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_csp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=sp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |
Given X
and v
, this function return where
y
is an abstract_vector
, X
an array of abstract_vector
and v
a
Fortran array containing the coefficients of the linear combination.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(out), | allocatable | :: | y |
Ouput vector. |
|
class(abstract_vector_cdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=dp), | intent(in) | :: | v(:) |
Coordinates of |
Given X
and B
, this function computes where
X
and Y
are arrays of abstract_vector
, and B
is a 2D Fortran array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(abstract_vector_cdp), | intent(out), | allocatable | :: | Y(:) |
Output matrix. |
|
class(abstract_vector_cdp), | intent(in) | :: | X(:) |
Krylov basis. |
||
complex(kind=dp), | intent(in) | :: | B(:,:) |
Coefficients of the linear combinations. |